Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Global cloud coverage has a substantial impact on local and global radiative budgets. It is necessary to correctly represent clouds in numerical weather models to improve both weather and climate predictions. This study evaluates in situ airborne observations of cloud microphysical properties and compares results with the Weather Research and Forecasting model (WRF) and Community Atmosphere Model version 5 (CAM5). Dynamical conditions producing supersaturated conditions with respect to ice at high altitudes in regions diagnosed by convective activity are explored using observations taken from the Deep Convective Clouds and Chemistry (DC3) campaign, and results are compared with simulated data from WRF. The WRF analysis tests multiple cloud microphysics schemes and finds the model requires much stronger updrafts to initiate large magnitudes of ice supersaturation (ISS) relative to observations. This is primarily due to the microphysics schemes over-predicting ice particle number concentrations (Ncice), which rapidly deplete the available water vapor. The frequency of different cloud phases and the distribution of relative humidity (RH) over the Southern Ocean is explored using in situ airborne observations taken from the O2/N2 Ratio and CO2 Airborne Southern Ocean Study (ORCAS) and compared with simulated data from CAM5. The CAM5 simulations produce comparable distributions of RH in clear-sky conditions at warmer temperatures (>-20°C). However, simulations fail to capture high frequencies of clear-sky ISS at colder temperatures (< 40°C). In addition, CAM5 underestimates the frequency of subsaturated conditions within ice phase clouds from -40°‒0°C.more » « less
-
Abstract Supercooled liquid water (SLW) and mixed phase clouds containing SLW and ice over the Southern Ocean (SO) are poorly represented in global climate and numerical weather prediction models. Observed SLW exists at lower temperatures than threshold values used to characterize its detrainment from convection in model parameterizations, and processes controlling its formation and removal are poorly understood. High‐resolution observations are needed to better characterize SLW over the SO. This study characterizes the frequency and spatial distribution of different cloud phases (liquid, ice, and mixed) using in situ observations acquired during the Southern Ocean Clouds, Radiation, Aerosol Transport Experiment Study. Cloud particle phase is identified using multiple cloud probes. Results show occurrence frequencies of liquid phase samples up to 70% between −20°C and 0°C and of ice phase samples up to 10% between −5°C and 0°C. Cloud phase spatial heterogeneity is determined by relating the total number of 1 s samples from a given cloud to the number of segments whose neighboring samples are the same phase. Mixed phase conditions are the most spatially heterogeneous from −20°C to 0°C, whereas liquid phase conditions from −10°C to 0°C and ice phase conditions from −20°C to −10°C are the least spatially heterogeneous. Greater spatial heterogeneity is associated with broader distributions of vertical velocity. Decreasing droplet concentrations and increasing number‐weighted mean liquid diameters occur within mixed phase clouds as the liquid water fraction decreases, possibly suggesting preferential evaporation of smaller drops during the Wegener‐Bergeron‐Findeisen process.more » « less
-
Abstract In this study, we conduct sensitivity experiments with the Community Atmosphere Model version 5 to understand the impact of representing heterogeneous distribution between cloud liquid and ice on the phase partitioning in mixed‐phase clouds through different perturbations on the Wegener‐Bergeron‐Findeisen (WBF) process. In two experiments, perturbation factors that are based on assumptions of pocket structure and the partial homogeneous cloud volume derived from the High‐performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole‐to‐Pole Observation (HIPPO) campaign are utilized. Alternately, a mass‐weighted assumption is used in the calculation of WBF process to mimic the appearance of unsaturated area in mixed‐phase clouds as the result of heterogeneous distribution. Model experiments are tested in both single column and weather forecast modes and evaluated against data from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program's Mixed‐Phase Arctic Cloud Experiment (M‐PACE) field campaign and long‐term ground‐based multisensor measurements. Model results indicate that perturbations on the WBF process can significantly modify simulated microphysical properties of Arctic mixed‐phase clouds. The improvement of simulated cloud water phase partitioning tends to be linearly proportional to the perturbation magnitude that is applied in the three different sensitivity experiments. Cloud macrophysical properties such as cloud fraction and frequency of occurrence of low‐level mixed‐phase clouds are less sensitive to the perturbation magnitude than cloud microphysical properties. Moreover, this study indicates that heterogeneous distribution between cloud hydrometeors should be treated consistently for all cloud microphysical processes. The model vertical resolution is also important for liquid water maintenance in mixed‐phase clouds.more » « less
An official website of the United States government
